Probabilistic Fracture Analysis of Functionally Graded Materials - Part II: Implementation and Numerical Examples
نویسندگان
چکیده
Probabilistic fracture analyses are performed for investigating uncertain fracture response of Functionally Graded Material (FGM) structures. The First-Order-Reliability-Method (FORM) is implemented into an existing Finite Element code for FGM (FE-FGM), which was previously developed at the University of Illinois at Urbana-Champaign [2]. The computational simulation will be used in order to estimate the probability of crack initiation with uncertainties in the material properties only. The two-step probability analysis method proposed in the companion paper (Part I, [1]) is illustrated by a numerical example of a composite strip with an edge crack. First, the reliability index of a crack initiation event is estimated as we vary the mean and standard deviation of the slope and the location of the inflection point of the spatial profile of Young's modulus. Secondly, the reliability index is estimated as we vary the standard deviation and the correlation length of the random field that characterize the random spatial fluctuation of Young's modulus. Also investigated is the relative importance of the uncertainties in the toughness compared to those in Young's modulus.
منابع مشابه
Probabilistic Fracture Analysis of Functionally Graded Materials - Part I: Uncertainty and Probabilistic Analysis Method
Probabilistic fracture analysis is performed for predicting uncertain fracture responses of Functionally Graded Material (FGM) structures. The uncertainties in material properties including Young's modulus and fracture toughness are considered. The limit state function for a crack initiation event is defined in terms of the J-integral for FGMs. The First-Order-ReliabilityMethod (FORM) is used i...
متن کاملاستفاده از روش غنی شده بدون شبکه گلرکین در تعیین پارامتر های شکست صفحات FGM
Stress-intensity factors (SIFs) are the most important parameters in fracture mechanics analysis of structures. These parameters are evaluated for a stationary crack in functionally graded plates of arbitrary geometry using a novel Galerkin based mesh-free method. The method involves an element-free Galerkin method (EFGM), where the material properties are smooth functions of spatial coordinate...
متن کاملElectrical and Mechanical Performance of Zirconia-Nickel Functionally Graded Materials
In the present work, six-layered (Zirconia/Nickel) functionally graded materials were fabricated via powder metallurgy technique (PMT). The microstructure, fracture surface and the elemental analysis of the prepared components were studied, and their linear shrinkage, electrical conductivity, fracture toughness and Vickers hardness were evaluated. The results show that the linear shrinkage of t...
متن کاملAn accurate scheme for mixed-mode fracture analysis of functionally graded materials using the interaction integral and micromechanics models
The interaction integral is a conservation integral that relies on two admissible mechanical states for evaluating mixed-mode stress intensity factors (SIFs). The present paper extends this integral to functionally graded materials in which the material properties are determined by means of either continuum functions (e.g. exponentially graded materials) or micromechanics models (e.g. self-cons...
متن کاملModified Fixed Grid Finite Element Method to Solve 3D Elasticity Problems of Functionally Graded Materials
In the present paper, applicability of the modified fixed grid finite element method in solution of three dimensional elasticity problems of functionally graded materials is investigated. In the non-boundary-fitted meshes, the elements are not conforming to the domain boundaries and the boundary nodes which are used in the traditional finite element method for the application of boundary condit...
متن کامل